欢迎来到新航道官网!新航道-用心用情用力做教育!
好轻松考研 新航道雅思APP 留学院校库

咨询热线:400-605-9009

南京新航道 > 雅思阅读 > 2014年4月5日雅思阅读原文分享(二)

2014年4月5日雅思阅读原文分享(二)

来源:      浏览:      发布日期:2014-04-08 00:00

返回列表

    今天南京新航道雅思频道小编将为大家分享2014年4月5日雅思阅读原文,供大家参考,以下是详细内容。

 

How do plants defend themselves?

 

    Plant defense against herbivore or host-plant resistance (HPR) describes a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Plants can sense being touched,[1] and they can use several strategies to defend against damage caused by herbivores. Many plants produce secondary metabolites, known as allelo chemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores, or reduce plant digestibility.

 

    Other defensive strategies used by plants include escaping or avoiding herbivore in time or in place, for example by growing in a location where plants are not easily found or accessed by herbivores, or by changing seasonal growth patterns. Another approach diverts herbivores toward eating non-essential parts, or enhances the ability of a plant to recover from the damage caused by herbivore. Some plants encourage the presence of natural enemies of herbivores, which in turn protect the plant. Each type of defense can be either constitutive (always present in the plant), or induced (produced in reaction to damage or stress caused by herbivores).

 

    Historically, insects have been the most significant herbivores, and the evolution of land plants is closely associated with the evolution of insects. While most plant defenses are directed against insects, other defenses have evolved that are aimed at vertebrate herbivores, such as birds and mammals. The study of plant defenses against herbivore is important, not only from an evolutionary view point, but also in the direct impact that these defenses have on agriculture, including human and livestock food sources; as beneficial 'biological control agents' in biological pest controlprograms; as well as in the search for plants of medical importance.

 

    Chemical defenses

 

    The evolution of chemical defenses in plants is linked to the emergence of chemical substances that are not involved in the essential photosynthetic and metabolic activities. These substances, secondary metabolites, are organic compounds that are not directly involved in the normal growth, development or reproduction of organisms, and often produced as by-products during the synthesis of primary metabolic products. Although these secondary metabolites have been thought to play a major role in defenses against herbivores, a meta-analysis of recent relevant studies has suggested that they have either a more minimal (when compared to other non-secondary metabolites, such as primary chemistry and physiology) or more complex involvement in defense.

 

    Secondary metabolites are often characterized as either qualitative or quantitative. Qualitative metabolites are defined as toxins that interfere with an herbivore’s metabolism, often by blocking specific biochemical reactions. Qualitative chemicals are present in plants in relatively low concentrations (often less than 2% dry weight), and are not dosage dependent. They are usually small, water soluble molecules, and therefore can be rapidly synthesized, transported and stored with relatively little energy cost to the plant. Qualitative allelochemicals are usually effective against non-adapted specialists and generalist herbivores.

 

    Types of chemical defenses

 

    Plants have evolved many secondary metabolites involved in plant defense, which are collectively known as antiherbivory compounds and can be classified into three sub-groups: nitrogen compounds (including alkaloids, cyanogenic glycosides, glucosinolates and benzoxazinoids), terpenoids, and phenolics.

 

    Alkaloids are derived from various amino acids. Over 3000 known alkaloids exist, examples include nicotine, caffeine, morphine, colchicine, ergolines, strychnine, and quinine. Alkaloids have pharmacological effects on humans and other animals. Some alkaloids can inhibit or activate enzymes, or alter carbohydrate and fat storage by inhibiting the formation phosphodiester bonds involved in their breakdown. Certain alkaloids bind to nucleic acids and can inhibit synthesis of proteins and affect DNA repair mechanisms. Alkaloids can also affect cell membrane and cytoskeletal structure causing the cells to weaken, collapse, or leak, and can affect nerve transmission. Although alkaloids act on a diversity of metabolic systems in humans and other animals, they almost uniformly invoke an aversively bitter taste.

 

    Cyanogenic glycosides are stored in inactive forms in plant vacuoles. They become toxic when herbivores eat the plant and break cell membranes allowing the glycosides to come into contact with enzymes in the cytoplasm releasing hydrogen cyanide which blocks cellular respiration. Glucosinolates are activated in much the same way as cyanogenic glucosides, and the products can cause gastroenteritis, salivation, diarrhea, and irritation of the mouth. Benzoxazinoids, secondary defence metabolites, which are characteristic for grasses (Poaceae), are also stored as inactive glucosides in the plant vacuole. Upon tissue disruption they get into contact with β-glucosidases from the chloroplasts, which enzymatically release the toxic aglucones. Whereas some benzoxazinoids are constitutively present, others are only synthesised following herbivore infestation, and thus, considered inducible plant defenses against herbivory.

 

    Mechanical defenses

 

    The thorns on the stem of this raspberry plant, serve as a mechanical defense against herbivory.

 

    Plants have many external structural defenses that discourage herbivory. Depending on the herbivore’s physical characteristics (i.e. size and defensive armor), plant structural defenses on stems and leaves can deter, injure, or kill the grazer. Some defensive compounds are produced internally but are released onto the plant’s surface; for example, resins, lignins, silica, and wax cover the epidermis of terrestrial plants and alter the texture of the plant tissue. The leaves of holly plants, for instance, are very smooth and slippery making feeding difficult. Some plants produce gummosis or sap that traps insects.

 

    A plant's leaves and stem may be covered with sharp prickles, spines, thorns, or trichomes- hairs on the leaf often with barbs, sometimes containing irritants or poisons. Plant structural features like spines and thorns reduce feeding by large ungulate herbivores (e.g. kudu, impala, and goats) by restricting the herbivores' feeding rate, or by wearing down the molars. Raphides are sharp needles of calcium oxalate or calcium carbonate in plant tissues, making ingestion painful, damaging a herbivore's mouth and gullet and causing more efficient delivery of the plant's toxins. The structure of a plant, its branching and leaf arrangement may also be evolved to reduce herbivore impact. The shrubs of New Zealand have evolved special wide branching adaptations believed to be a response to browsing birds such as the moas. Similarly, African Acacias have long spines low in the canopy, but very short spines high in the canopy, which is comparatively safe from herbivores such as giraffes.

 

    Indirect defenses

 

    The large thorn-like stipules of Acacia collinsii are hollow and offer shelter for ants, which in return protect the plant against herbivores.

 

    Another category of plant defenses are those features that indirectly protect the plant by enhancing the probability of attracting the natural enemies of herbivores. Such an arrangement is known as mutualism, in this case of the "enemy of my enemy" variety. One such feature are semiochemicals, given off by plants. Semiochemicals are a group of volatile organic compounds involved in interactions between organisms. One group of semiochemicals are allelochemicals; consisting of allomones, which play a defensive role in interspecies communication, and kairomones, which are used by members of higher trophic levels to locate food sources. When a plant is attacked it releases allelochemics containing an abnormal ratio of volatiles. Predators sense these volatiles as food cues, attracting them to the damaged plant, and to feeding herbivores. The subsequent reduction in the number of herbivores confers a fitness benefit to the plant and demonstrates the indirect defensive capabilities of semiochemicals. Induced volatiles also have drawbacks, however; some studies have suggested that these volatiles also attract herbivores.

 

    以上就是南京新航道雅思频道为大家整理的2014年4月5日雅思阅读原文分享(二),希望对大家有帮助,更多资讯、资料请访问南京新航道雅思频道:https://nj.xhd.cn/ielts/

【本文标签】: 南京雅思培训| 南京托福培训| 南京sat培训| 新航道雅思| 新航道托福|

【责任编辑】:南京新航道小编 版权所有:转载请注明出处

免费在线模考

姓名:

电话:

立即测试

为您推荐

    咨询热线
    400-605-9009
    集团客服电话
    400-097-9266

    南京新航道学校:南京市中山东路189号南京图书馆东门首层(地铁2号、3号线大行宫站)

    邮箱:210000